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LOCATING AN ISOLATED GLOBAL MINIMIZER
OP A CONSTRAINED NONCONVEX PROGRAM

by

Garth P. McCormick

1. Introduction

In [2] conditions were given under which it could be proved that the

problem
inf f(x)
x ~ C C

where C is a convex compact set, had only one local infiinum which was

taken on at a unique point x* in C • The solution was shown to be uncon-

strained in the sense that the 1 by n derivative vanished there, i.e.,

f’(x* )= O .

Furthermore, the amount by which the function f evaluated at some point

in C exceeded its global minimum value was given by an explicit formula.

In this paper, similar results are obtained for the equality constrained

and then the inequality constrained problem. In Section 2 some preliminary

lemmas are developed for the problem of solving simultaneous nonlinear equa—

tions. In Sections 3 and 4 bounds are developed for an isolated local con—

at rained minimizer in C , and on the minimum v~.lue associated with that
minimizer. It is also shown that if slightly stronger conditions are placed

on the problem (verifiable) then that local minimizer is a global one in C .
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2. Solving Nonlinear Equations—Preliminary Lemmas

Let a(z) be an N x l  vector function which is continuously dif-

ferentiable in an open set containing a given compact convex set C C RN

Assume that a’ (z) , the N x N  derivative matrix of a(z) , has an in-
verse at every point in C . Let C0 denote the interior of C • De-

fine 13 {ulu=a(z) for some zcC} . Consider any point 2cc
0 
. Put

I~ = a(2) . It follows from the inverse function theorem that there ex—

A 0 A

ists an open set C C C containing z , an open set U C U containing u

and a continuously differentiable function g() defined on i~ such that

g[a(z) ] = z , for z in e a[ g(u) ] = u , for u in 0

Lemma 1. Suppose for some z0 c C0

N(z
0
) {z

~
— a’(y)~~

’a(z
0
) ye c} C C • (1)

Then :
a(z

0
) t c U , for all t such that O < t < 1  , (2)

and there exists a point z* in N(z
0
) such that

a(z*) = 0 . (3)

Proof: Let t be the smallest value greater than or equal to zero such

that g[a(z 0) t ]  is defined for O ,~~t~~ t~~ 1 . (Clearly t < l  , since

and because of the inverse function theorem.) Assume t is such

that O < t < t < l  . Nov

, —ldg(a(z)]/da a (z)

Thus,
1

g(a(z
0
)tl g[a(z

0
)] + I {dg[a(z

0
)(l—s)+(z0)st]/da}ds a(z0

)(t—l)

1 
0 (4)

— z0 
— I a’[g{a(z 0) (l—s+st)}] ”

~~ds a(z 0) (l—t) .
0

(Note because 0 < < l—s+a t < 1 , g{a(z0)(l—s4’st) } is defined and in C .)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ -~~~~~ ~~~~~~~~~~~~~~~~
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Now,

= z0 
— f~a’[g{a(z0

)(l_s+st)}]”~ds a(zO)

is in C . To see this, assume the contrary. Because C is a convex set,

there would exist a hyperplane (a,~) which separates y from C with the

properties that

c~z — ~~~< O  for all zc C ,
(6)

if ctz —~~~> O  z i C ,

and

cty — ~ > 0

Using (5) and the mean value theorem , there is an S where

0 < s < l  such that

a[z0—a
’[g{a(z

0
)(l—s+st)}]~~a(z0)] — ~ > 0

(Note because t < 1 — s + st < 1 , g{a(z
0)(l—s+st)} is defined and in C .)

Using (6) this contradicts (1). Thus y c C . Now z
0
t + 9(l— t) gives

(4). Since C is a convex set and 0 < t < 1 , and z
0 

c C0 , (4) is also con-

tained in C
0
. Since a’(z) is continuous it follows that g[a(z

0
)t] c C

If t > 0 the same reasoning as above implies g[a(z
0)t] c C

0 
, and the

inverse function theorem implies the existence of values less than t and

close to it for which a(z
0)t C U . By contradiction then, t 0 • This

proves (2) and (3).

0

I
I
I 

_ _ _ _ _  _ _ _ _ _ _  _ _ _ _  _ _ _ _  _ _
t . 
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3. The Equality Constrained Problem

The equality constrained nonlinear programming problem can be written

minimize f(x)

subject to x t R {x1h~ (x) = 0 , for j=1,...,p} and x ~ C

where C is a compact convex subset of R~ . The functions f , {h~} are

assumed to be twice continuously differentiable in an open set containing C

The vector h(x) is the p by 1 vector whose jth component is h .(x) . The

following development will be general in that the particular numerical method

for generating the null space of h’(x) (the p by n derivative matrix

of b(x)) will not be specified.

Suppose S(x) denotes a matrix function which gives the null space

of h’(x) . That is, a necessary and sufficient condition that h’(x)z 0

is that z = S(x)v for some v . Also associated with h’ (x) is a
pseudo inverse h’(x) # , i.e., a matrix satisfying

h’(x) h’(x)#h’(x) = h’ (x)

Note that when the rank of h’(x) is p , h’(x)h’(x)# I

It is assumed only that S(x) and h’(x)# are related in that

[I—h’(x) #h’(x)] = S(x)W(x) for some matrix W(x)

The Lagrangian function associated with (7) is

TL(x,ct) f(x) — ci h(x)

The vector z of Section 2 is to be identified with 2
T 

= (xT,ctT)
and

V L(x ,ct)
a(z) 

~

is (N—(n+p)) by 1. The following result is easily obtained:

_ _ _-- ~~~~ .U~~~~~~~~ --—- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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IV~~
L(X,c&) ,

a’(z) = 
—h ’(x) , 0 (8)

Let C be the convex hull of {fI(x)h,(x)#TIx c C )  . Define

C = C X  C~ . Define H(x,ci) = S(x)
TV2 L(x ,ci)S(x)

Theorem 1. Suppose for every z c C

(i) h ’(x) has full rank (equal to p)

(ii) S(x) is a continuously differentiable n by (n—p)
matrix function generating the null space of h ’(x )
and that

(iii) H(x,c&) is a positive definite matrix.

Then a’(z) 1 
exists for all z C C and is given by

—l 
fS(x)1i(x,a)

_l
S(x) T,_ [I_S(x)H(x,n)

_

~S(x)TV~xL(x,ci)]ht(x)#l
a’(z) = 

1 1 (9)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S(x) T], F J
where

F = _h?(x)#
T [V~~L(x ,a)_V~~L(x ,a)S(x)li (x,a)

_l
S(x) TV~xL(x ,ci)]h~ (x) #

Let g(•) denote the inverse function as defined in Section 2. The

notation S(t) will mean S[g{a(z
0)t)] and similar notation used for the

other quantities. Suppose x
0 c C is given. Define ci

0 
[f~ (x

0
)hI(x

0
)#]T

and set z~ — (x~,ci~ ) . Def ine N(z
0

) = {z
0—a’(y)~~a(z0)~ y c C) . Assume

further (iv) that N(z0) C C and that z0 
£ C

0

Then there exists a z* C N(z
0) such that V L(x*,cs*) 0 , h(x*) = 0 , x*

is an isolated local minimizer to Problem (7), and

I

0~~~~~~~~~~~~~~~~~~ . 
-fl-:--- . ,  ~~~~~~,~~~~~~~~~~~~~

-
~~~

- -
~~~
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~~~~~~~~~~
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f (x *) — f(x 0) = f~{tVXL(xO, ao)
T
S(t)H(t)

_l
S(t)Tv~L(xo,cio

)

(10)

+ f’ (t) j~l—S(t)H(t) 
1S(t)TV2 L(t)]h* (t)

#h(x
0
) }dt

Proof: Because H(x,ci) is positive definite, its inverse exists. The

remainder of the first assertion above can be verified by multiplying

the two matrices together.

The existence of z* is guaranteed by Lemma 1. Since V L(x*,ci*) = 0

(x*,a*) satisfies the first order necessary conditions for an equality con—
strained extremum. Assumption (iii) means then that the second order sufficiency

conditions for an isolated local minimizer are satisfied at x*

From Lemma 1 it also follows that g{a(z0)t} is defined and in C

for all 0 < t < 1 . Define the composite function

F( t) = f [g {a(z
0

) t}]

Then

f (x*) = F(O) = F(l) ÷ F’(t)dt, where F(1) = f (x
0)

Using the chain rule of differentiation,

F’(t) = df[g{a(z0
)t}]/dt = df[g{a(z

0
)t)]/dz . dg{a(z0)t)/da 

. d[a(z
0
)t]/dt

= f ’  (t )S ( t )H( t )~~ S(t) TV L(x0,co0)+f’ (t ) [ I— S ( t ) H ( t )~~’S(t) TV 2 L (t ) ] .

h’(t)#h(x0)

Now h’(t)S(t) 0 , so

f’(t)S(t) — [f’(t)—ci(t)b’(t)]S(t) — V L(t)TS(t) = tV L(x0, cz0)
TS(t) . (11)

Using this fact completes the proof of the theorem.

4 -
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4. The Inequality Constrained Problem

The notation of the previous section will, be used and the preceding

results extended to the inequality constrained problem

minimize f(x)

subject to x C R E {x h .(x)~~O , for j=l,...,m) , (12)

and xc C
x 

where C is a compact convex subset of R~

Lemma 2. If x~ is an isolated local minimizer for the Problem

minimize f(x)

subject to x c  {x Ih ,(x)>0 , for j~1,...,p < m}(t C
x 

(13)

and if x*CR , then x* is an isolated local minimizer for Problem (12).

(Note: the proof is obvious and therefore omitted.)

In what follows, conditions will be given which guarantee the

existence of an isolated local constrained minimizer in C for the

Problem (l3). Without loss of generality it will be assumed that the

vector h(x) will consist of the first p functions.

Theorem 2. For the inequality constrained Problem (13) assume as in

Theorem 1. Then there exists a z~ C N (z
0
) such that V L(x*,cs*) = 0

and h(x*) = 0

Proof: The proof of this theorem parall .,ls that for Theorem 1 and will not
be given. Note that it is not possible to conclude that x~ is a local

minimizer for the inequality constrained problem. Several more conditions

must be placed on the problem quantities.

Corollary 1. Assume as in Theorem 2. If at x* , ci* > 0 and x* c R

then x* is an isolated local minimizer for the Problem (12).

Proof: The proof follows because under the assumptions, x* satisfies the

second order sufficiency conditions for a constrained minimizer to (13).

Using Lemma 2, the corollary is proved.

5. Conditions Under Which the Isolated Local Minimizer
Is a Global Minimizer in the Convex Compact Set

Some notation needs to be established. Let x be any point in

C Cl R . Define for 0 < t < 1 , y( t) — x*(1_ t)+Xt , and

‘(s,t) — x*(l_s)+[x*(l—t)+xt]s , for 0 < s < 1 .

— - --;; - 

~ c~
r
~
—1 _ _ _ __

_______ ~~~~~~~~

. 

~~~~~~~~ 
- .-—- — _ 

..— 0



— 8 —

Theorem 3. Assume as in Theorem 1. In addition the following assumptions

are made.

If

(i) h’[y(t)]dt has rank p

(ii) ~
T
f
1 
f
l V2 L[y(s,t),c~*1dsdt v > 0 for all

v ~ 0 where f~h’[y(t)]dt v = 0 ,

then

f f ~ f ~ 
V2 L[v(s,t),ci*]dsdt , — f~ h~[y(t)1

Tdt~

~ (14)
— f ~ h’[y(t)]dt ,

has an inverse. Denote this by fA 0 B
T
~ where A i.~ n by n , BT is n by p

D J
If (iii) , — f’[y(t)] dt BT > 0 , (component by component) then

f (x)  > f (x*) . If (i), (ii), and (iii) hold for all X £ C , then x* is

the unique global minimizer for If in R Cl C

Proof: Consider the following (recall V L(x*,n*) = 0 , h(x*) = 0):

(j u
l V L [y(t ) ,ci*]\ (01 If~~ 

f ~ ~~~y(s , t ) , cz*]dsdt , — f ~ 
h~ [y(t)]

T
dt\/Ax\

1 1=1 1+1 II I’
— h’(x) I ‘s~oJ \ — f ~ 

h’[y(t)]dt , 0 J~ ta/

where t~x = (x_ x*) t~r~ = (ci*_ci*) = 0

The existence of the above inverse is guaranteed by the theorem

hypotheses. It can be written explicitly after the following notational

considerations are given. Let S be any n by (n—p) matrix generating the

null space of N = f ~ h’[y(t)]dt . Let Ni/ be a psueudo inverse ~‘i

related to S in that there exists a matrix W such that [I—N#N ] = Sw

_ _ _ 4

di
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Let H f~ f~ 
V,~ L1;(s,t),ci*]dsdt The explicit inverse (which is

invariant to the choice of the particular null space matrix S and pseudo

inverse N#) is then

( H, _NT\’ S(STHS)~~S
T 

, _ [I_S(S
T
Hs)~~s

TH ]N #

k—N , 0 / = 

_N# T [I_HS(S T
HS) IST ] — N#T[H~HS(STHS)

_]
STH]NI/

Now

f(x)  — f (x *) = f ’ [y ( t ) ]dt Ax

= f~ 
f ’ [ y ( t )]dt  S(STHS)~~ ST

f~ V L [ y ( t ) , ct*]dt

— f’[y(t)]dt BTh(x)

f~ 
V y(t),a*]

TdtS TH~~~~S
T
f~ V~L[y(t),ci*]dt

— flo f’[y(t)]dtB
Th(x)

Since x C R , h(x) > 0 . Thus both terms on the right above are

nonnegative. If f~ 
V~L[y (t) ,a*]TdtS#0 , the first term above is > 0

The second term is > 0 if h~(x) > 0 for one of j 1 ...,p . The

only way both terms can be equal to zero is if f~ 
V L[y(t),a*]

TdtS = 0

and h(x) 0

If both these conditions hold it is easy to show that Ax = x — x~ 0

Thus f(x)  > f (x*) when x # x~

Several interesting results come out of this analysis. There are

two estimates of the generalized Lagrange multipliers associated with a

local minimizer. The first one is

= f’(x
0)h’(x0

)# . (15)
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• This is used in the computation of the Lagrangian Hessian matrix. The

second estimate is

f’  (x
0
)[I—S(x

0
)H(x0, ct0)~~S(x

0
)
T
V
2 L(x

0
,ct
0

]h’(x
0

)# . (16)

This is the one which determines whether or not a constraint is to be
considered binding at the local solution. The latter estimate is really

the estimate of the multipliers (15) at the minimizer of f in the sub—

space h(x) = h(x0) . In algorithm development, then , the choice of

whether or not to include a constraint in the set of those considered

active should be made on the basis of (16) rather than (15).

6. Discussion and Example

The importance of the second order estimate of the multipliers was

first pointed out by Gill and Murray in their seminal paper [ii . The

estimate in (16) above corresponds exactly to their “refinement” given

in (7.4) of [1]. Their vector p there is the approximation required

to find the minimizer of the function in the equality constrained sub—

space. In the current paper this is the transpose of the vector

—l 1—f (x
0

)S(x
0

)H(x00cg0) S(x
0
) -

in (16) above.

The quantity (10) which gives the exact difference between the

value of the objective function at the minimizer in the space where
h(x) = 0 and its value at some point x

0 
may be considered (for intui-

tive explanatory purposes) to consist of two parts. Let x denote the

minimizer for the problem: minimize f(x) subject to h(x) = h(x
0
) ,

xc C • The first term under the integral in (10) is an approximation

to f ( )  — f(x
0
) . It is well known that the difference in the optimal

objective function value resulting from a perturbation in the right—hand

side of the constraints is approximated by the sum of the Lagrange multi-

pliers times the perturbations. The vector premuitiplying h(x 0) is the

L -~ 
~~~~~~~~~~~~~~~~~~~~~ 

— — - —w— 
- —

.- — ~~-~~~~P 
~~~~~~~~~~ 

,____J 
0 4
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integral of a vector of second order multiplier estimates at unconstrained

minimizers of the form (16). This can be regarded as the appropriate

vector of Lagrange multipliers needed to approximate f(x*) — f(~)

Thus (10) says (In effect) that f(x*) — f(x0) = [fG) — f(x 0) ]  +

[f(x*)_ f(~ )]

In terms of the inverse function approach x consists of the

first n components of

The exact difference f(x
0
) — f(x) can be computed by integrating from

T TT —T —T T T TT(x0, cc0) to (x ,c~ ) along g[(tV L(x0, ct0) , h(x
0
) ) ] . The exact

second term, f(x*) — f(x) , can then be obtained by integrating from

(~
T
&
T)
T 

to (x*T,ct*T)T along the curve g[(QT, h(x
0
)
T
)
T] . The reason

that the current approach Is taken is that the existence of the inverse

function along the “diagonal path” can be checked by (1). The piecewise

two—path segment described above may not exist in the region C X C
~

without stronger assumptions.

The practical application of this theory is that from (1), it is

possible to place upper and lower bounds on each component of the mini-

mizer and multipliers, and from (10) It is possible to place an upper and

lower bound on the optimal objective function value. It is in general

not possible to compute the exact set N(z
0
) of (1) or the right—hand

side of (10). Using numerical techniques, one can compute upper and
lower bounds on the desired quantities. For the purely unconstrained

case, the computational requirements were discussed in [3]. The con-

strained case is more complicated and a future paper will discuss the

linear algebra required to do this.

Essentially what has to be done is to replace each scalar function
required In the formulas by two nuthers, an upper and a lower bound on

j I
______________  ___________ 

a
• - - - ~- - ,  ~~~~~~~~~~~~~~~~~~~~~~~ 

____________

- ./
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the range that that scalar function can take when x is restricted to

C , and ci to C~ . Techniques required to do this have, to a cer-

tain extent , been developed into a general theory of “interval arith-

metic” [4]. Every element of a vector and matrix can be systematically

replaced by two numbers. The problem becomes more difficult when an

interval inverse matrix is required, i.e., a matrix of interval ele-

ments which contains the inverse of all possible matrices implied by the

interval matrix. In order to get a set bounding (1), an interval inverse

matrix is required for a’(y)’~~ , where the form taken for the constrained

problem is given by (8). In the following example, ad hoc procedures are

used to get the interval bounds. A few of the details are given, but the

bulk of the computations must be taken on faith.

The rules for computing intervals for the range of functions (or

interval extensions as they are sometimes called) are very simple. The

notation [a,b] Is used to indicate that an upper bound on the range of

a scalar function is b and a lover bound is a . If two scalar valued
functions have interval extensions (a,b] and [c,d] , respectively ,
then the sum has the bounds [a+b ,c+d] . The range on the product is

[min(ac,ad,bc,bd) , max[ac,ad, bc,bd)] . Subtraction is similar to addi-

tion. Division is similar to multiplication as long as the divisor does

not contain zero. The other major requirement Is that interval extensions

be computable for functions of a single variable operating on an interval.

In one sense this can be viewed as an optimization problem. For meat

functi~ns of a single variable, the mm and max of that function over an

interval are easily discernible. Suppose a scalar t is known to have

a range of [a,b] • Then the scalar function t2 has a range of

[min(a2,b
2), max (a2,b2)] if 0 ~ [a ,b] , and [0, max(a2,b2)]  if

a~~0~~b . A scalar function which has the range [a ,aJ will in the

following be indicated by a for simplicity. Thus, the notation a[c,d]

will indicate the range of the product of two functions, one of which has

range [a,a] , the other [c,d] . The resulting range is [niin(ac,ad),

max(ac,ad)] . The major research area needing to be investigated is

obtaining an interval extension of a matrix inverse.

_ _ _ _ _ _  _ _  
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• The problem is

minimize -x + y

subject to h = — x 2 — y 2 + l > 0 ,

C
1 

— {(x,y) I .2< x < 2 , — 2 < y < —  .2}

The quantities required are

h’ = 

~z;x~ _ : ‘ 
h’)# = ~~~~~[2~~

2
÷~
2
n

_1.

s 

~
( ~) 

(x +y ) , V~~L = ( 2ct)

The multiplier estimate is given by f ’ (h’ )#  — (x—y)/ [2(x 24y2)] . The top

component of (h’)# is —x/ [2(x 2+y2)]  • One can show that the minimum of

this function in the rectangle is taken on at x .2 , y — — .2 and the
maximum at x — 2 , y — —2 • Thus the range of the first component is
[—1.25 , — .125] . Similar considerations yield the range of the second
component to be [.125 , 1.25] . The range on cx is therefore
(—l) [—l.25 , — .125] + (l)[. 125 , 1.25 ] — [.25 , 2.5] . This then is the set
C
~

The matrix whose inverse is desired [from (8) ] is

• /2ci 0 2x\

(0 2ci 2yJ
\2x 2y 0/

The inverse matrix has the form

/ 2
I 

—y xy -~x~f 2 ‘I 2 2 — 1
~ 

xy —x —ay i [—2cs(x +y )]

2—ay ~

The interval extension of this inverse when x,y , and ci are restricted

as indicated above is

I
p

_
_ _
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• /(.00l980, 1.98020] [.019802, 1.0] [.024752, 1.251 \ (17)

B — ( [.019802, 1.0] [.001980 , 1.98020] [—1.25, — .024752]

[.024752, 1.25] [—1.25, — .024752] [— 15.625, — .015625]

Let (x0,y0) = [.7, — .71] . Thus a
0 

= .709184, h
0 

= .0059 , and

7 L 0 = [— .007142 , _~007042 1T 
. Then N(z

0
) of Theorem 2 is contained in

/X0\ /~ / .i \ /— .oo7l42

I Yo~~~~4~h )  — (_ .7l J— B (— .007042

~ 
ct0/ 

0 \ .709184/ \ .0059

/( .700300 , .728560]\ / [ 0.2, 2]
— ((— .717220, — .6890601 ) C ( (—2 , —0.2]

\ ( .608371, .717845] / \[ 0.25, 2.5)
which is clearly in the original rectangle of bounds.

The bound on the optimal objective function value is calculated

using (10). The first term under the integral involves S(t)H(t)~~’S(t)

Note from (9) that this occurs, for any (x,ci) , in the upper left—hand

corner of the inverse of a’ . This is thus available from (17) above.

An interval extension (for every t) of V L(x0sa0
)
TS( t)H( t)~~S( t)TV L(x

0
,ci
0
)

/[.001980, 1.98020), [0.19802, 1.0] \/— .007142
(—.007142, — .007042) ( JI

~ [0.19802, 1.0] , [.001980, 1.98020]/ \— .007042

= (.000002191 , .00029976]

A term of one—half comes from the integration of a constant times t for

t between 0 and 1. Thus the contribution of the first term is

[.0000010955 , .00014988 ]

The second term under the integral in (10) involves the negative

o-f the matrix which occurs in the upper right—hand corner of (9). This

needs to be preaultiplied by the objective function derivative (—1, 1)
and poetmultiplied by h(x

0
) to yield

_ _ _ _ _ _ _ _ _ _ _ _  
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I— [ .024752, 1.25] \
(—1,1) ( J (.0059) — [.00029208 , .01475]

— .024752)1

Adding the two contributions yields the bounds

[.0002931755 , .01489988]

Since f0 
— —1.41 , the value of f* must lie in the interval

[— 1.42490 , —1.41029 ]

I

_ _  t
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